The improved SIMC method for PI controller tuning

Chriss Grimholt Sigurd Skogestad NTNU, Trondheim, Norway

Reference: C. Grimholt and S. Skogestad, "The improved SIMC method for PI controller tuning", IFAC-conference PID'12, Brescia, Italy, March 2012

SIMC PI tuning rule*

- Look at initial part of step response, Initial slope: $k' = k/\tau_1$
- One tuning rule! Easily memorized

$$K_c = \frac{1}{k'} \cdot \frac{1}{(\theta + \tau_c)}$$

$$\tau_I = \min(\tau_1, 4(\tau_c + \theta))$$

 $\tau_{c} \geq -\theta$: Desired closed-loop response time (tuning parameter) •For robustness select: $\tau_{c} \geq \theta$

Questions:1. How good is really this rule?2. Can it be improved?

Reference: S. Skogestad, "Simple analytic rules for model reduction and PID controller design", *J.Proc.Control*, Vol. 13, 291-309, 2003 (Also reprinted in MIC)
(*) "Probably the best simple PID tuning rule in the world"

1. How good is really the SIMC rule?

Need to compare with:

 Optimal PI-controller for class of first-order with delay processes

Optimal controller

- Tradeoff between
 - Output performance High controller gain ("tight control")

Low controller gain ("smooth control")

- Robustness
- Input usage
- Noise sensitivity
- Quantification
 - Output performance:
 - Frequency domain: weighted sensitivity ||W_pS||
 - Time domain: IAE or ISE for setpoint/disturbance
 - Robustness: M_s, GM, PM, Delay margin
 - Input usage: ||KSG_d||, ISE or TV for step response
 - Noise sensitivity: ||KS||, etc.

Our choice:

J = avg. IAE for setpoint/disturbance

Norwegian University of Science and Technology

Output performance (J)

$$J(c) = 0.5 \frac{IAE_{ys}(c)}{IAE_{ys}^{o}} + 0.5 \frac{IAE_{d}(c)}{IAE_{d}^{o}}$$

IAE^o_{ys}: PI-optimal for setpoint ($M_s = 1.59$)

IAE^o_d: PI-optimal for disturbance ($M_s = 1.59$)

IAE = Integrated absolute error = $\int |y-y_s| dt$, for step change in y_s or d

Cost J is independent of:

- 1. process gain k
- 2. disturbance magnitude
- 3. unit for time

Norwegian University of Science and Technology

Optimal PI-controller: Minimize J for given M_s

$$\begin{split} \min_{c} J(c)|_{M_{s}=m} \\ \text{PI-controller: } c(s) &= K_{c} \left(1 + \frac{1}{\tau_{I}s}\right) \\ \text{First-order with delay processes: } g(s) &= \frac{k}{\tau_{1}s+1}e^{-\theta s} \\ \theta &= 1, \tau_{1}/\theta = [0, \infty] \\ m &= [..., 1.2, 1.59, 1.7, 2...] \end{split}$$

Norwegian University of Science and Technology

Optimal PI-controller

i

Setpoint change at t=0, Input disturbance at t=20, $g(s)=k e^{-\theta s}/(\tau_1 s+1)$, Time delay $\theta=1$

Norwegian University of Science and Technology

8

Optimal PI-controller

Setpoint change at t=0, Input disturbance at t=20, $g(s)=k e^{-\theta s}/(\tau_1 s+1)$, Time delay $\theta=1$

9

Optimal PI-controller

i

Setpoint change at t=0, Input disturbance at t=20, g(s)=k $e^{-\theta s}/(\tau_1 s+1)$, Time delay $\theta=1$

 $M_{s} = 1.2$

Optimal performance (J) vs. M_s

Input usage (TV) increases with M_s

$$TV(u) = \int_0^\infty \left| \frac{du}{dt} \right| dt = \sum_{i=1}^\infty |u_i - u_{i-1}|$$

NTNU
Norwegian University of
Science and Technology

Setpoint / disturbance tradeoff

Setpoint / disturbance tradeoff

Table 1. Optimal PI-controllers	$(M_s = 1.59)$	and corresponding	IAE-values for	four processes.
---------------------------------	----------------	-------------------	----------------	-----------------

Process	Setpoint		Input disturbance		Optimal combined (minimize J)							
	K_c	$ au_I$	LAE_{ys}^{o}	K _c	$ au_I$	IAE_d°	K_c	$ au_I$	IAE_{ys}	IAE_d	J	M_s
e^{-s}	0.20	0.32	1.607	0.20	0.32	1.607	0.20	0.32	1.607	1.607	1	1.59
$\frac{e^{-s}}{s+1}$	0.54	1.10	2.083	0.50	1.0	2.036	0.54	1.10	2.083	2.041	1.00	1.59
$\frac{e^{-s}}{8s+1}$	4.0	8	2.169	3.34	3.7	1.135	3.46	4.0	3.111	1.158	1.23	1.59
$\frac{e^{-s}}{s}$	0.50	∞	2.169	0.40	5.8	15.09	0.41	6.3	4.314	15.4	1.51	1.59

 IAE_{ys} is for a unit setpoint change. IAE_d is for a unit input disturbance.

Optimal setpoint: No integral action

Comparison with SIMC

$$K_c = \frac{1}{k'} \cdot \frac{1}{(\theta + \tau_c)}$$

$$\tau_I = \min(\tau_1, 4(\tau_c + \theta))$$

Tuning parameter: τ_c

Tight control with good robustness: Select $\tau_c = \theta$ (effective delay)

• Gives M_s between 1.59 and 1.7

16 Comparison of J vs. M_s for optimal and SIMC for 4 processes

Conclusion (so far): How good is really the SIMC rule?

- Varying τ_{C} gives (almost) Pareto-optimal tradeoff between performance (J) and robustness (M_s)
- $\tau_{\rm C} = \theta$ is a good "default" choice
- Not possible to do much better with any other PIcontroller!
- Exception: Time delay process

2. Can the SIMC-rule be improved?

Yes, possibly for time delay process

$$K_c = \frac{1}{k'} \cdot \frac{1}{(\theta + \tau_c)}$$

$$\tau_I = \min(\tau_1, 4(\tau_c + \theta))$$

Tuning parameter: τ_c

Time delay process, $g = k' e^{-\theta s}$: SIMC-rule gives integrating controller ($\tau_I = \tau_1 = 0$)

Optimal PI-settings

19

Optimal PI-settings (small τ_1)

Improved SIMC-rule: Replace τ_1 by $\tau_1 + \theta/3$

$$K_c = \frac{1}{k} \cdot \frac{\tau_1 + \frac{\theta}{3}}{(\theta + \tau_c)}$$

$$\tau_I = \min(\tau_1 + \frac{\theta}{3}, 4(\tau_c + \theta))$$

Tuning parameter: τ_c

Time delay process $(\tau_1 = 0)$: $\tau_I = \frac{\theta}{3}$

Step response for time delay process

²³Comparison of J vs. Ms for optimal and SIMC for 4 processes

Conclusion

Questions:

- 1. How good is really the SIMC-rule?
 - Answer: Pretty close to optimal, except for time delay process
- 2. Can it be improved?
 - Yes, to improve for time delay process: Replace τ_1 by τ_1 + θ /3 in rule to get "Improved-SIMC"
- Not possible to do much better with any other PIcontroller!

Reference: C. Grimholt and S. Skogestad, "The improved SIMC method for PI controller tuning", IFAC-conference PID'12, Brescia, Italy, March 2012

²⁵ Model from closed-loop response with P-controller

