
1

The improved SIMC method
for PI controller tuning

Chriss Grimholt
Sigurd Skogestad

NTNU, Trondheim, Norway

Reference: C. Grimholt and S. Skogestad, “The improved SIMC method for PI controller tuning”,
IFAC-conference PID’12, Brescia, Italy, March 2012

2

SIMC PI tuning rule
• Look at initial part of step response, Initial slope: k’ = k/1

• One tuning rule! Easily memorized

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003 (Also reprinted in MIC)
(*) “Probably the best simple PID tuning rule in the world”

c ≥ - : Desired closed-loop response time (tuning parameter)
•For robustness select: c ≥

Questions:
1. How good is really this rule?
2. Can it be improved?

Step response

*

3

1. How good is really the SIMC rule?

Need to compare with:
• Optimal PI-controller

for class of first-order with delay processes

4

Optimal controller

• Tradeoff between
– Output performance
– Robustness
– Input usage
– Noise sensitivity

High controller gain (“tight control”)

Low controller gain (“smooth control”)

• Quantification
– Output performance:

• Frequency domain: weighted sensitivity ||WpS||
• Time domain: IAE or ISE for setpoint/disturbance

– Robustness: Ms, GM, PM, Delay margin
– Input usage: ||KSGd||, ISE or TV for step response
– Noise sensitivity: ||KS||, etc.

Ms = peak sensitivity

J = avg. IAE for
setpoint/disturbance

Our choice:

5

IAE = Integrated absolute error = ∫|y-ys|dt, for step change in ys or d

Cost J is independent of:
1. process gain k
2. disturbance magnitude
3. unit for time

Output performance (J)

6

Optimal PI-controller:
Minimize J for given Ms

7

Ms=2

Ms=1.2

Ms=1.59
|S|

frequency

8

Ms=2

Optimal PI-controller

Setpoint change at t=0, Input disturbance at t=20,
g(s)=k e-θs/(1s+1), Time delay θ=1

9

Ms=1.59

Optimal PI-controller

Setpoint change at t=0, Input disturbance at t=20,
g(s)=k e-θs/(1s+1), Time delay θ=1

10

Ms=1.2

Optimal PI-controller

Setpoint change at t=0, Input disturbance at t=20,
g(s)=k e-θs/(1s+1), Time delay θ=1

11

Optimal performance (J) vs. Ms

Optimal PI-controller

12

Input usage (TV) increases with Ms

TVys TVd

Optimal PI-controller

13

Setpoint / disturbance tradeoff

Pure time delay process: J=1, No tradeoff
(since setpoint and disturbance the same)

Optimal controller:
Emphasis on disturbance d

Optimal PI-controller

14

Setpoint / disturbance tradeoff

Optimal setpoint:
No integral action

Optimal PI-controller

15

Comparison with SIMC

16
Comparison of J vs. Ms for optimal and SIMC for 4 processes

17

Conclusion (so far):
How good is really the SIMC rule?

• Varying C gives (almost) Pareto-optimal tradeoff
between performance (J) and robustness (Ms)

• C = θ is a good ”default” choice
• Not possible to do much better with any other PI-

controller!

• Exception: Time delay process

18

2. Can the SIMC-rule be improved?

Yes, possibly for time delay process

19

Optimal PI-settings
Optimal PI-controller

20

Optimal PI-settings (small 1)

Time-delay process
SIMC: I=1=0

0.33

Optimal PI-controller

21

Improved SIMC-rule: Replace 1 by 1+θ/3

22

Step response for time delay process

Time delay process: Setpoint and disturbance response same

θ=1

23
Comparison of J vs. Ms for optimal and SIMC for 4 processes

24

Conclusion

Questions:
1. How good is really the SIMC-rule?

– Answer: Pretty close to optimal, except for time delay process

2. Can it be improved?
– Yes, to improve for time delay process: Replace 1 by 1+θ/3 in rule

to get ”Improved-SIMC”

• Not possible to do much better with any other PI-
controller!

Reference: C. Grimholt and S. Skogestad, “The improved SIMC method for PI controller tuning”,
IFAC-conference PID’12, Brescia, Italy, March 2012

25

Model from closed-loop
response with P-controller

Kc0=1.5
Δys=1

Δyu=0.54

Δyp=0.79

tp=4.4

dyinf = 0.45*(dyp + dyu)
Mo =(dyp -dyinf)/dyinf
b=dyinf/dys

A = 1.152*Mo^2 - 1.607*Mo + 1.0
r = 2*A*abs(b/(1-b))
k = (1/Kc0) * abs(b/(1-b))
theta = tp*[0.309 + 0.209*exp(-0.61*r)]
tau = theta*r

Example: Get k=0.99, theta =1.68, tau=3.03
Ref: Shamssuzzoha and Skogestad (JPC, 2010)

+ modification by C. Grimholt (Project, NTNU, 2010; see also new from PID-book 2011)

Δy∞

